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Every science requires a manifest, and psychology is no exception. In 1913, James
Watson wrote the following: “Psychology [...] is a purely objective experimental
branch of natural science. Its theoretical goal is the prediction and control of behavior.
It recognizes no dividing line between man and brute. The behavior of man, with all
of its refinement and complexity, forms only a part of the behaviorist’s total scheme of
investigation.” We omitted from the quote “psychology as seen by a behaviorists” to
clarify that psychology as a science is defined by its commitment to the practices
defining any other natural science, and it has nothing to do with a particular “school.”

Since its beginnings as an experimental science in the 19th century, that studied
the response to physical stimuli, psychology has had a close relationship to mathe-
matics that is well summarized in the three volumes of Mathematical Psychology
published in 1963 (R. D. Luce et al.), in recent review papers (Falmagne & Lee,
2002; D. Luce, 1995) and in two new handbooks (Batchelder, Colonius, Dzhafarov, &
Myung, 2016). It is in this context that we are so honored to participate in a tribute
to José Antonio de la Pefia. No mexican mathematician has understood and better
appreciated the relation between mathematics and psychology than he did. His
broad interests led him to forage in areas such as game theory and to recognize that
mathematics, as a language of nature, also covers the study of the behavior of living
beings.

The present chapter is organized in the following way. In the first part we will
argue in favor of studying behavior as an adaptation to the statistical structure of
the environment. In the second part we will present an example of how a very
simple mathematical model of an integrator can describe a very general principle of
adaptation common to bacteria and human beings. In the third part we will extend
the model to an environmental structure characterized by changes with noise. We
will conclude with a brief discussion about the consequences of new developments
in statistical techniques in the formation of behavioral scientists.

Throughout its history, psychology has argued about the “natural class” that
defines its object of study. We will argue for a naturalistic answer. The science
of behavior studies the adapted behavior as well as the mechanisms that have an
origin in natural selection and that generate adaptive behavior. Biological organisms
expend energy and require a constant resupply of it. Evolutionary forces work as a
filter that shape and select successful forms of obtaining energy constrained by the
distribution of the sources (biologically important events or BIE). These elements



conform an empirical system that is the proper object of study of the science of
behavior: an adaptive and adapted system. These systems can be seen as possible
optimal solutions to problems associated with higher reproductive success. It is
important to consider that there is no adapting agent; we are instead talking about a
process without agency or intention, a process of selection under constraints.

To make sense of the notion of adaptability as an optimization process we need to
start by identifying the set of constraints under which the resupply of energy occurs.
There can be two types of constraints. The first is associated with the organism
and the second with the statistical properties of the BIE. Among the first, the most
important is that all behavior expends energy and takes time: therefore, different
behaviors compete for the available time and energy. Other important organismic
constraints are the historical (possible solutions acquired during the lifespan of
the organism), computational and physiological (mechanisms that allow detecting,
discriminating and acting on BIE).

The second set of constraints are those associated with the distribution of the
BIE in the environment, what we call the statistical properties of the environment.
The availability of the BIE can be associated with the following: 1) time, 2) location,
3) covariance with other environmental events, and 4) covariance with the behavior
of the organism. Organisms that can detect and learn about these properties will
be in a better position to distribute their behavior optimally to obtain the different
relevant BIE. These constraints have been the object of much research in timing,
place learning, classical conditioning and instrumental conditioning and have been
an important source of psychological knowledge (Bouton, 2016; Staddon, 2016).

The previous constraints are limited to individual events, discrete stimuli and
responses. Nevertheless, organisms can detect and adapt to second order statistical
properties of the distribution of BIE: the rate of occurrence, for example, the num-
ber of events per unit time. There is a large body of literature indicating that the
organisms’ relative distribution of behavior and time is controlled by the rates of
occurrence of BIE (Davison & McCarthy, 1988; Herrnstein, 1961).

Additionally, we can consider a third statistical property of the distributions of
BIE: the uncertainty about the time, place, covariances and rate of occurrence of BIE.
If the uncertainty is expected, there is a probability distribution with parameters
that can be inferred from experience, as in the case of “bandit” problem; if the
uncertainty is unexpected, the parameters of the distribution change over time or
space according to a transition function, for example, in bandit experiments where
the reward probabilities of the arms change over time. This is a recent area of research
with broad theoretical implications that we will see later in the chapter (Yu & Dayan,
2005).

A first conclusion we can reach is that if we accept the theory of natural selection
and the statistical properties of the availability of BIE that can be described by the
constraints stated above, we can say that psychology’s natural object of study is the
adaptability of behavior to the statistical properties of the environment.



In the recent years, the study of adaptive behavior has been advanced by the
clarification of different levels of analysis (Marr, 1982). The first level is the compu-
tational or rational. It consists of studying of optimal solutions to problems posed
by a particular set of constraints of the BIE. This level is closely related to an evolu-
tionary analysis and to the way an engineer would approach the solution to a design
problem. The analysis requires a detailed specification of the constraints involved.
The difficulty in finding all the relevant restrictions to very specific behaviors makes
this analysis more viable for problems with general constraints. A second level of
analysis is called algorithmic and involves the study of the rules (mechanisms) that
can implement the optimal solution. The third level is the biological implementation
and searches for the physical structures that can implement a particular algorithm.
The relation among levels is not one-to-one, but it is complementary. For example,
different species can face similar problems of adaptation, and the computational
analysis would converge to one solution. Different algorithms, however, can imple-
ment the solution depending on the elements available to compose a mechanism,
and these can be implemented by different physical structures.

The way we described the relation between levels assumes that the computational
one limits the other two, and it may seem more compatible with an evolutionary
analysis. Nevertheless, the relation can go in the other direction: the physical subtract
and the elements of the mechanisms can be seen as a limitation to what the “optimal”
solution to a problem is. In conclusion, it is necessary to consider these three levels
not only as mutual constraints, but also as complements. Typically, the solution to a
problem is limited by the mechanisms and physical components available. Natural
selection, however, can operate in a different direction promoting the evolution of
new physical materials and mechanisms that underlie new solutions, as was the case
with the evolution of the nervous system (Sterling & Laughlin, 2015).

Hill climbing and reinforcement learning are two good examples of integrating
the three different levels of explanation. Consider first the problem of adaptation that
salmonella faces in finding nutrients; it cannot perceive the nutrients at a distance.
Nevertheless, experimental evidence indicates that the salmonella cluster around
the attractant stimuli. To solve this problem, they have two behaviors: tumbling and
straight swimming. A sudden change in the concentration of the nutrient produces a
change in behavior from tumbling to straight swimming, which reverses to tumbling
after a short period of time, and it changes again when there is a new change in the
concentration of the nutrients. This behavior can be modeled with an algorithm
that can generate an optimal solution to the problem of ending closer to the highest
concentration of nutrients known as hill climbing.

Hill climbing is built on the following elements:

1. The possibility of detecting the element that is biologically relevant, in this
case, a change in the concentration of the nutrient.

2. A memory of the value of that variable just a moment before.



3. A comparison of the value in that short-term memory with the current detected
value.

4. Two behaviors: one behavior that randomly samples (random exploration) the
value of the BIE, which is tumbling in the case of salmonella, and a second
behavior that exploits (moves) in the direction of the improvement, which is
straight swimming in the case of salmonella.

5. Arule that determines the value of the change in the relevant variable needed
to change from a behavior of exploration to one of exploitation.

6. Very importantly, a process of adaptation to a change in the value of the relevant
variable that allows returning to sampling after some time and escape from a
local minima.

The integration of the six previous components can be succinctly captured by the
following equation (Staddon, 2016):

Y[+1 = aYt + b(XH.l _Xl) 0<a< 1,

where Y is the concentration of the nutrient and represents a form of short-term
memory; aY, represents the factor of adaptation that refers to changes in the short-
term memory; b(X,,, — X,) represents the process of comparison between the level
of concentration immediately before and the current level. The system has two
responses and a threshold Y,,. If Y < Y, it continues tumbling (explore). If Y > Y,
it changes to swimming straight (exploit). Note that in this simple model, there is
no integration of the experiences: the bacteria only compare the experiences in two
close points of time.

Reinforcement learning is another solution to the adaptive problem of detecting
covariances among BIE and other events, including responses. These types of models
are related to hill climbing (trial and error), however, they incorporate the possibility
of integrating previous experiences. Reinforcement models are composed of two
elements. The first one solves the problem of credit assignment (prediction), and
the second is a response rule that determines the optimal use of the knowledge
acquired. In what follows, we will only address the credit assignment problem by
illustrating how the same mathematical structure can represent different intuitions.
Computationally, we will assume that the goal of the system is to make the most
accurate predictions; this will make it possible to maximize the reward rate. Later
in the chapter we will discuss that depending on the statistical structure of the
environment there may be other goals for the system.

Credit assignment is a computationally complex problem. It consists of determin-
ing the events responsible for the occurrence of a BIE, which in turn reduces the level
of uncertainty associated with its presence. The main problem is the enormous space
of possible candidates that can be credited for its occurrence. As a computational
solution to the problem of credit assignment, reinforcement models require two



different steps. The first one is the reduction of the number of possible candidates,
which can be accomplished through biases such as considering events that are con-
tiguous, similar, novel or evolutionary relevant to the BIE. The second component is
a mechanism that reduces through experience the number of candidates until only
one element is left.

Perhaps the simpler representation of reinforcement learning is a leaky integrator.
This model captures the early idea that reinforcement is a strengthening process
where a reward "charges” a system that discharges in time if an additional reward is
not provided. Bush and Mosteller (1953) formalized this class of models, which have
dominated the theoretical and experimental literature in the study of learning until
now (Dayan & Nakahara, 2018; Sutton & Barto, 1998).

We are interested in the dynamics, in discrete time, of the predictive value Vy of
a stimulus X. The organism faces stimuli that unfold in time, sometimes alone and
other times accompanied by a BIE. The leaky integrator states that the predictive
value of a stimulus is a weighted sum of two variables, the predictive value of the
stimulus at time ¢ and whether a reward (BIE) might have occurred at time ¢ or not:

Vx=aVx,+(1—-a)R, 0<a<l, €9

where the parameter a represents the importance of the cumulative experience with
a stimulus X up to time t, relative to the occurrence or not of the BIE (R,). Values of
a close to one indicate that the accumulated experience is more important, while
values close to zero indicate that the current presentation of a BIE is more relevant.
The parameter a can be interpreted as a temporal window determining how far back
in time an organism reaches for predicting the presentation of an BIE. In fact, a leaky
integrator is an instance of an exponential running mean that gives more weight to
the experiences closer to the present.

A simple rearrangement of the terms in equation (1) leads to a version of rein-
forcement learning more commonly used today, which is one that emphasizes a
process of comparison:

VX = VX, +a(R, —Vx,). )
If we set §, = a(R, — Vx,), we have the equation better know as the § rule:
Vi =V, +aé,. 3)

This form of the equation has had two different interpretations. One emphasizes the
degree of “surprise” regarding the presence of an BIE. The second, more common
today, emphasizes that the predictive value of a stimulus changes as a function of
the magnitude of the prediction error and that the motor of learning is its reduction
(Niv & Schoenbaum, 2008). In both forms of the equation, the computational goal
is to achieve the best possible prediction; in one case as a filter that represents a
running exponential mean, and in the other as an error reduction mechanism. The



findings that dopaminergic neurons fire in the presence of a prediction error is one
of the best integration of the algorithmic and implementation levels (Shultz, Dayan,
& Montague, 1997) and greatly support the study of reinforcement learning (Niv,
2009).

Equation (3), however, cannot account for the results of experimental protocols
where two or more stimuli are present simultaneously and contiguous with an
BIE, indicating that the stimuli compete for predictive value. These protocols are
a more realistic representation of the problem of credit assignment. Rescorla and
Wagner (1972) extended the standard reinforcement learning model to account
for the results obtained, which suggests the following: one, compound stimuli are
formed by separable elements with predictive value that are summed up, and two,
that for each separated element of a compound stimuli the system applies the § rule.
If the compound stimuli consists of only two elements A and B, then

V=V, + Vg, (@)

where V. represents the cumulative prediction. Thus, applying the § rule for each
element
VAn+l = VAn + a(Rn - VTn)- (S)

The Rescorla-Wagner model has been successful in accounting for much empirical
literature (Miller, Barnet, & Grahame, 1995) in complex credit assignment situations,
and its simple mathematical structure has helped its acceptance in spite of known
problems in accounting for phenomena such as spontaneous recovery of predictive
value after periods of extinction (Bouton, 2018). Reinforcement learning algorithms
are now an important tool in machine learning and robotics (Kober, Bagnell, & Peters,
2013). In addition, they have been extended to account for behavior in strategic
interaction in the area of behavioral game theory (Camerer, 2003), in behavioral
ecology (Frankenhuis, Panchanathan, & Barto, 2018), decision making (Erev &
Haruvy, 2013) and in neuroeconomics (Daw, 2013).

In recent years, however, there have been new developments in reinforcement
learning that allow representing adaptation in complex and changing environments
that animals usually encounter in nature. For example, by incorporating the no-
tion of uncertainty (Gershman, 2015; Kalman, 1960), long-term consequences (Sut-
ton & Barto, 1998) and structural changes in the environment (Glaze, Filipowicz,
Kable, Balasubramanian, & Gold, 2018; Nassar et al., 2012; Nassar, Wilson, Heasly,
& Gold, 2010; Wilson, Nassar, & Gold, 2013). Under these circumstances, simple re-
inforcement learning algorithms like the one in equation (3) are unable to accurately
describe behavior. This is particularly clear when studying behavior in unstable
environments. Adaptation to these types of scenarios usually requires a concrete
representation of change (Glaze et al., 2018; Ritz, Nassar, Frank, & Shenhav, 2018;
Velazquez, Villarreal, & Bouzas, 2019) or parameters sensitive to the statistics of the
environment (Nassar et al., 2010), neither of which is incorporated in equation (3).



Consider the case in which the reward rate in a foraging scenario gradually decreases
because of continuous intake or increases because of the season of the year. These
changes can occur at different speeds, which the animal can exploit to decide when
is the best time to search for a different source. For example, if the reward rate is
dangerously decreasing at a fast speed, it might be a better idea to start seeking other
alternatives, even if the current level of reward is not too low. The idea that the
animal can use information about the speed of change in the environment can be
easily incorporated into equation (3):

Vn+1 = Vn +Via+ a(Rn - Vn)’ (6)

n+l

where V' represents both the direction (a rate of growth if positive and a rate of
decrement if negative) and magnitude (the absolute value of V') of the change in the
environment. This model is able to accurately describe behavior in environments
that change at different rates (Veldzquez et al., 2019) in perceptual decisions, and
similar algorithms have been developed to describe reward-based decision (Kolling
& Akam, 2017; Wittmann et al., 2016).

Importantly, changes in the environment can also be abrupt and unpredictable.
In the last decade, an important body of research was developed tackling how humans
(Nassar et al., 2012, 2010; Wilson et al., 2013) and other animals (Baum, 2010) adapt
to these types of fluctuations. In the face of a change, past information becomes less
relevant for making predictions about future outcomes. In the absence of changes,
however, historical information becomes more relevant, since the future will likely
resemble the past. The modulation of historical information is controlled by the
learning rate « in equations (3) and (6), which should be dynamic in an environment
with periods of stability and change. A simple extension to the structure of equa-
tion (6) allows the learning rate « to change depending on whether the environment
is stable or has changed:

af®st if change
+ o (R, = Vy) a = ) @)
a®°¥ if no change

Ve =V, + V!

n+l

where the learning rate o« now changes over time ¢ (or trials) and can take one of two
possible values. If the environment has changed, it becomes high, therefore allowing
fast adaptation. If the environment has not changed, it is low, which gives a higher
relevance to historical information and promotes slow learning. Now, equation 8
represents a simple reinforcement learning algorithm that allows the adaptation to
an environment that changes at a certain rate, which is represented by V’, or that
changes abruptly (by changing between fast or slow learning). Deciding between
these two strategies of adaptation can easily be solved using Bayesian inference, which
allows the selection of one or the other strategy depending on the current evidence
in favor of either abrupt or gradual changes (following a rate) in the environment.



One of the main challenges in the application of mathematical models in psychol-
ogy has been how to relate data and theory, given that as models get more complex, so
do the methods required for data analysis. In this regard, the modeling of individual
differences and model comparison have been the problems that have received the
most attention. In recent years, the development of computational and numerical
methods has made Bayesian methods more readily available. From these, Bayesian
graphical models have seen a wide application in the Cognitive and Behavioral
sciences. Fields like psychophysics (Lee, 2018), decision making (Scholten, Read,
& Sanborn, 2014) and reinforcement learning (Velazquez et al., 2019), to name a
few, have started to adopt the Bayesian methodology for making inferences about
model parameters (Chévez, Villalobos, Baroja, & Bouzas, 2017), comparing models
(Steingroever, Wetzels, & Wagenmakers, 2016) and designing experiments (Myung
& Pitt, 2009; Zhang & Lee, 2010).

There are advantages that have come with the adoption of Bayesian graphical
models in psychology. The first one is that these methods allow us to represent
uncertainty in a principled way by means of a probability distribution over model
parameters known as prior distribution. Second, this type of analysis makes it simpler
to test for individual differences in a data set. Two recent examples can be found
in the literature (Chavez et al., 2017; Villarreal et al., 2019) where these methods
are used to show that individual differences that arise from patterns in the data
have a common sense interpretation within relatively simple models. Third, the
adoption of these methods has led to a wider use of Bayes Factors as a means of
model comparison. This adoption has allowed researchers to avoid the problem of
how to account for model complexity and overfitting, given that this method already
deals with both problems. A good example of the application of Bayesian graphical
models in psychology can be found in Lee (2018), where the author introduces
the advantages mentioned here through a practical example with a psychophysics
experiment. Another example of the advantages of a Bayesian approach to model
construction and evaluation related to reinforcement learning can be found in a
recent paper by Villarreal et al. (2019).

We can see from these simple examples that the nature of psychology and its
relation to other sciences has changed substantially in the first quarter of this century.
Experimental psychology has become a model-based science where computational
and probabilistic models dominate, many of which are common in different scientific
areas such as neuroscience, artificial intelligence, microeconomics and game theory.
Additionally, the role played by statistics in psychology has changed. In particular,
Bayesian statistics is now widely used for parameter estimation and model com-
parison. Along with these developments, the use of open software such as Python
and R has facilitated replicability and open science. These developments urge us to
rethink the structure of the academic programs aimed at the formation of behavioral
scientists. They call for a new disciplinary degree in behavioral sciences different
from the degree in professional psychology.



José Antonio de la Pefia has been one of the greater driving forces of mathemat-
ics in México, constantly finding spaces where the language of mathematics can
illuminate and help to clarify questions and solutions. In other chapters, you will
find details of the richness of his life. However, we thought that the best tribute we
can give him was to provide a couple of examples of how mathematics has helped
the development of theories of learning in psychology. The conference tribute is a
good example of another role that José Antonio has played in the advancement of the
Science in México, well beyond his role in the leadership of scientific institutions and
agencies that support them. His qualities as a human being make him a magnet that
attracted a group of friends from very diverse areas of science, including psychology;
dinners at his house turned into lively conversations from different perspectives,
always with the amiability of Nelia Tello. We can all congratulate ourselves to have
the friendship of José Antonio and his continuing support to integrate the work of
different disciplines under the mantle of mathematics, as well as his teaching about
how to face the inescapable uncertainty that surrounds our lives.
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